Variable Step Size Least Mean Square Algorithm Based on Censored Regression
نویسندگان
چکیده
منابع مشابه
Acoustic Echo Cancellation Using Modified Variable Step Size Least Mean Square Adaptive Algorithm
this paper is focused on implementation of acoustic echo cancellation using modified variable step size least mean square algorithm (MVSSLMS) in LabVIEW. Simulation experiments are done to measure its performance and compared with other conventional variable step size algorithms. Results show better performance of MVSSLMS over other algorithms in terms of echo return loss enhancement (ERLE), es...
متن کاملIterative-Promoting Variable Step-size Least Mean Square Algorithm For Adaptive Sparse Channel Estimation
Least mean square (LMS) type adaptive algorithms have attracted much attention due to their low computational complexity. In the scenarios of sparse channel estimation, zero-attracting LMS (ZA-LMS), reweighted ZA-LMS (RZA-LMS) and reweighted -norm LMS (RL1-LMS) have been proposed to exploit channel sparsity. However, these proposed algorithms may hard to make tradeoff between convergence speed ...
متن کاملIterative-Promoting Variable Step Size Least Mean Square Algorithm for Accelerating Adaptive Channel Estimation
Invariable step size based least-mean-square error (ISS-LMS) was considered as a very simple adaptive filtering algorithm and hence it has been widely utilized in many applications, such as adaptive channel estimation. It is well known that the convergence speed of ISS-LMS is fixed by the initial step-size. In the channel estimation scenarios, it is very hard to make tradeoff between convergenc...
متن کاملLeast Mean Square Algorithm
The Least Mean Square (LMS) algorithm, introduced by Widrow and Hoff in 1959 [12] is an adaptive algorithm, which uses a gradient-based method of steepest decent [10]. LMS algorithm uses the estimates of the gradient vector from the available data. LMS incorporates an iterative procedure that makes successive corrections to the weight vector in the direction of the negative of the gradient vect...
متن کاملLeast Mean Square Algorithm
The Least Mean Square (LMS) algorithm, introduced by Widrow and Hoff in 1959 [12] is an adaptive algorithm, which uses a gradient-based method of steepest decent [10]. LMS algorithm uses the estimates of the gradient vector from the available data. LMS incorporates an iterative procedure that makes successive corrections to the weight vector in the direction of the negative of the gradient vect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2019
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2019.12.386